首页 > 新闻 > 正文

大气挥发性有机物自动监测技术现状

时间:2019-09-30 09:46

来源:四川环境

的饱和浓度分别可达0.005 mol/mol、0.02 mol/mol,而环境空气中此类低分子量挥发性有机物的浓度一般在10一~10。mol/molu8I,远低于其饱和浓度,在实际样品分析时,较难实现对此类组分的高效冷凝富集,如果样品中其它有机组分浓度很低难以形成一定比表面积的液膜,其富集效率可能进一步降低;这也味着它们在实际样品分析中,回收率可能不稳定。(2)VOCs组分变为液态凝于空管内壁,部分活性强的组分分子与其它分子接触概率增加,可能发生反应。(3)≤一120℃的低温也会造成大气中其它组分的冷凝,例如H2O、CO2、SO2、NO。等,它们可能会影响分析的准确性,特别是水,当其在空管中结冰时易造成流路的堵塞或损伤。

2.1.2 固体吸附剂富集

固体吸附剂富集指以固体吸附剂为主的富集方式,部分厂家或研究者为了追求更佳的富集效果,对固体吸附剂进行了低温处理,但最低温度一般不低于一45℃。用于VOCs的固体吸附剂种类主要是多孔聚合物、石墨化炭黑、碳分子筛,代表产品是Tenax、Carbopack B、Carboseive S—III等。每种吸附剂均具有选择性,适合于一定性质范围的VOCs组分富集。对于性质差异很大的多种VOCs组分富集,吸附剂配方常采用多种固体吸附剂的组合。大气主要成分氮气和氧气等可以通过选择合适的配方,不对其进行吸附,从而降低此类物质对分析的干扰。富集的温度有常温和0℃以下的低温,前者通常是风冷,后者是半导体电子制冷。在常温下进行富集。优点是保持了吸附剂的较好选择性,特别是使用疏水性吸附剂时,大气中水分的影响不大,但可分析的VOCs范围可能较窄,部分VOCs组分的吸附效率不高、聚焦效果不好、色谱峰形不佳。因此,有厂家对固体吸附剂进行了低温处理,大幅度提升其适用范围与吸附效率,并且起到了聚焦效果,色谱峰形较好。但由于温度的降低,因此水分的干扰加剧。

2.2热脱附

上述两种形式富集的VOCs,均可以通过加热的方式脱附或汽化,并且通以惰性气体带离富集区域。热脱附法具有不消耗试剂、无毒环保、稳定可靠、回收率较高、便于实现自动化等优点,是具有优势的主流脱附技术。加热脱附的实现方式目前主要为两种:气体加热、电加热。

2.2.1 气体加热脱附

此类加热方式一般是将氮气通过仪器内部的加热或高温元件,使其升至较高温度,再流经富集部件的外部,由热气体传热的方式实现富集部件的升温,达到脱附目的。

当富集部件为毛细管时,此方式的理论升温速度>1 000℃/s,达到瞬间升温的效果,易使色谱峰具有良好峰形。但实际上它的加热温度较低,一般在200度以内,此温度很难使组合式固体吸附剂高效脱附,仅适用于空管中液态VOCs的汽化,因此它基本上用于超低温富集。

2.2.2电加热脱附

此类加热方式主要有两种:(1)加热丝紧密缠绕富集部件,通过传热的形式提高富集部件的温度;(2)当富集部件是特定电阻的金属管时,通过对金属管直接通电加热,达到迅速升温的效果。此类方式的最大优点是便于达到较高的脱附温度。采用组合式固体吸附剂时,一般需要300℃左右的脱附温度才能保证脱附效率,因此电加热是固体吸附剂富集法的主流脱附方式。

2.3脱水方式

无论何种富集方式,只要使用了0℃以下的低温,都需要在富集管前去除大气中的水分。除水一般有两种方式:Nafion管除水、低温空管除水。

Nafion是聚四氟乙烯和全氟一3,6一二环氧一4一甲基一7一癸烯一硫酸的共聚物,它具有优良的抗化学侵蚀特性,而磺酸基团有很强的渗水性,因此其具有较好的吸水效果。但磺酸基团也造成了对极性VOCs组分的吸附,而且它面对高浓度NH3,时,会受到不可逆的损伤。因此,目前使用最广泛的是低温空管除水技术。它是将空管制冷至0℃以下,使流经其中的水分结冰,温度越低,除水效果越好,但也越容易造成亲水陛、高沸点VOCs组分的损失。

2.4气相色谱法

由于大气中VOCs组分众多,因此常采用气相色谱法对组分进行分离。单根色谱柱难以将沸点一104~2300C的所有VOCs分离,因此一般采用两根色谱柱的方式。

2.4.1 双柱分离

目前VOCs自动监测的双柱分离方式,主要有两种:并联式、串联式。

并联式要求富集一热脱附也是并联式的双气路,此方式为双管路采样通道,一路富集c2~c5的烃类物质,它们经热脱附后进入气相色谱的1#号色谱柱分离,由FID检测;另一路富集C5~C12烃类物质、含氧和卤代烃类物质,组分经热脱附后进入2#色谱柱分离,由MS检测。

2018年2月原环境保护部组织编制的《环境空气臭氧前体有机物手工监测技术要求(试行)》推荐串联式的气相色谱分离方式,它也是目前采用较广泛的VOCs自动监测方式。其基本流程是热脱附后的VOCs由载气带人气相色谱仪,低沸点的VOCs组分先后流经1#号色谱柱、2#色谱柱分离,并进入FID检测;待低沸点VOCs组分从1#色谱柱流入2#色谱柱后,阀切换,剩余组分在1#色谱柱中继续分离,陆续流入MS检测。

2.4.2检测器

用于VOCs自动监测系统的检测器较多,包括MS、FID、PID、ECD等,其中使用最广泛的是MS和FID。

FID对烃类物质灵敏度高,但它选择性较低,且只能依靠保留时间定性,测定结果容易受到干扰旧5|,此外,对大部分有取代基团的有机物,特别是氟利昂系列,它的灵敏度偏低。MS可根据组分的碎片离子定性和定量,具有极好的适用性、高鉴别能力以及较好的灵敏度,特别面对未知污染时,它具有其它检测器难以企及的性能。

2.5性能指标与特点

该方法分析的VOCs组分多,并且具有较强的能力扩展空间。可通过增加采样体积,获得更低的方法检出限,也可以通过延长采样时间,使监测的代表性增加。白石对104种VOCs组分进行了测定,包括了C2~C12的烃类、苯系物、卤代烃、醛酮类,整体分析效果较好,其中共有89种物质线性达到0.99,准确度相对误差均在30%之内,采样体积以300mL计,用6次平行测定结果标准偏差的3倍作为检出限,其均在0.8×10-9mol/mol以下。

在面对VOCs组分众多的大气样品时,即便采用了快速色谱技术,单次分析时间也难以低于15min,因此该方法在及时|生上略有瑕疵。

编辑:李丹

  • 微信
  • QQ
  • 腾讯微博
  • 新浪微博

相关新闻

网友评论 人参与 | 条评论

版权声明: 凡注明来源为“中国水网/中国固废网/中国大气网“的所有内容,包括但不限于文字、图表、音频视频等,版权均属E20环境平台所有,如有转载,请注明来源和作者。E20环境平台保留责任追究的权利。
媒体合作请联系:李女士 010-88480317

010-88480329

[email protected]

Copyright © 2000-2020 https://www.chndaqi.com All rights reserved.

中国大气网 版权所有