首页 > 新闻 > 正文

我国大气VOCs监测现状及挑战

时间:2021-05-17 14:42

来源:生态环境部环境工程评估中心

大气中挥发性有机物(VOCs)来源广泛,组成复杂,可与氮氧化物(NOX)发生光化学反应生成二次污染物臭氧(O3)和细颗粒物(PM2.5)。另外,部分VOCs会直接影响人体神经、血液等系统,危害人体健康,卤代烃等组分还会加剧温室效应与平流层臭氧消耗。大气VOCs监测是分析我国大气VOCs含量、化学组成和来源,开展臭氧形成机理研究,支撑臭氧与细颗粒物协同控制的重要基础性工作。大气VOCs监测具有目标物种多、不同物种浓度差异大、对监测方法灵敏度要求高等特点,在监测灵敏度、准确度、数据有效性及可比性等方面还存在着一系列挑战。为此,应持续开展大气VOCs监测技术研究,并不断提升其监测数据质量。

01

我国大气VOCs监测现状

一直以来,我国政府都高度重视VOCs污染防治工作。2010年5月,国务院发布《关于推进大气污染联防联控工作改善区域空气质量的指导意见》,将VOCs列为重点控制的四项大气污染物之一。2012年与2017年,原环境保护部发布《重点区域大气污染防治“十二五”规划》《“十三五”挥发性有机物污染防治工作方案》,2013年国务院发布《大气污染防治行动计划》,均要求全面开展和推进VOCs污染防治工作,并提出2020年全国VOCs排放总量要比2015年下降10%以上的目标。2018年,国务院发布《打赢蓝天保卫战三年行动计划》,要求重点区域VOCsVOCS全面执行大气污染物排放特别限值。

准确、持续开展大气VOCs监测工作是落实国家VOCs污染防治规划和计划的必要前提。为此,我国科研人员针对我国不同城市中的VOCs总量或特定组分开展了一系列监测和研究工作。但不同科研工作监测的VOCs物种、样品采集方法、分析技术和质控措施不同,影响数据的可比性,不利于全面、系统、长期地了解VOCs污染特征与变化趋势。为了更好地评估全国VOCs的污染状况,科学、精准地支撑VOCs以及臭氧、细颗粒物协同控制政策的制定,2017年底,原环境保护部印发《2018年重点地区环境空气挥发性有机物监测方案》(以下简称《2018年监测方案》),要求在污染较重的京津冀及周边、长三角、珠三角、成渝、关中、辽宁中南部、武汉及周边地区共78个城市开展对美国光化学评估监测网络(PAMS)重组和升级前规定监测的57种非甲烷烃组分和13种醛、酮类VOCs组分的手工监测,其中19个直辖市、省会城市及计划单列市还需要手工监测47种有毒有害物质(美国环保署TO-15方法中规定监测的部分组分)。除手工监测外,19个直辖市、省会城市及计划单列市还需开展VOCs组分的自动监测。2019年,生态环境部发布《2019年地级市及以上城市环境空气挥发性有机物监测方案》(以下简称《2019年监测方案》),要求全国337个地级及以上城市均开展非甲烷总烃监测。在新增的259个地级及以上城市中,2018年臭氧超标的54个城市还应开展57种非甲烷烃组分和13种醛、酮类VOCs组分监测。

基于两个监测方案,我国已初步建立了大气VOCs监测网络,截至2020年1季度末,已有120个城市开展VOCs监测,其中54个城市开展手工监测,24个城市开展自动监测,42个城市同步开展手工、自动监测。但由于城市大气VOCs的业务化监测工作开展时间较短,还存在监测方法标准体系不完善、数据质量不高、数据挖掘与利用不够深入等问题。2020年,生态环境部印发《关于加强挥发性有机物监测工作的通知》《2020年挥发性有机物治理攻坚方案》等文件,要求进一步加强环境空气VOCs监测及质量保证与控制,深化监测数据分析与评估,全面推进VOCs有效治理和精准管控,实现VOCs治理能力的显著提升,VOCs排放量明显下降。2020年6月,生态环境部正式发布《生态环境监测规划纲要(2020—2035年)》,其中提出构建以自动监测为主的大气环境立体综合监测体系,推动大气环境监测从质量浓度监测向机理成因监测深化,实现重点区域、重点行业、重点因子、重点时段监测全覆盖,并完善全国大气颗粒物化学组分监测网和大气光化学评估监测网,以污染较重的城市和污染物传输通道为重点,按照国家统一指导、地方建设运维、数据联网共享的监测模式运行。以上文件对我国大气VOCs监测数据的有效性、准确性和代表性,以及监测的灵敏度提出了新的要求和挑战。

02

大气VOCs监测方法概述

大气VOCs监测过程通常可分为样品采集、样品富集与样品分析等过程。样品采集包括直接采样、衍生化采样等方法,也可通过吸附剂吸附的方式在采样过程中同时完成样品的采集与富集。样品采集后,可通过预浓缩等技术富集并进行分析。常用的分析技术包括气相色谱法(GC)、气相色谱-质谱联用法(GC-MS)、气相色谱-氢火焰离子化检测法(GC-FID)、高效液相色谱法(HPLC)、傅立叶红外光谱法(FTIR)等多种手段。根据采样方式与监测数据时间分辨率的不同,大气VOCs监测又可分为手工监测与自动监测两种模式。手工监测可多点同时采样,但时间分辨率低。自动监测可获得高分辨率的观测数据,更加有利于深入开展VOCs时间变化规律及光化学反应机理研究。

2.1 手工监测方法在气相色谱-质谱联用法、气相色谱-氢火焰离子化检测法、高效液相色谱法、傅立叶红外光谱法等不同的VOCs手工监测方法中,气相色谱-质谱联用法因选择性和灵敏度高,可适用于大多数VOCs组分测定,逐渐得到更加广泛的应用,并经过不断的优化和更新,形成了目前主流的预浓缩-热脱附-气相色谱-质谱/氢火焰离子化检测器监测方法,其中预浓缩是该方法的重点环节。预浓缩系统可以将VOCs组分进行富集,同时去除样品中会对分析造成干扰的水和二氧化碳,提高仪器的灵敏度,改善待测组分分离效果。目前常用的预浓缩系统主要可分为液氮冷阱预浓缩系统和吸附剂辅助电子制冷预浓缩系统。其中液氮冷阱预浓缩系统是较为传统的预浓缩方式,其制冷温度最低可达到-180℃,灵敏度较高,且不会带来目标化合物的“歧视”现象,其缺点为设备体积较大、液氮需要经常更换、运行成本较高。吸附剂辅助电子制冷预浓缩系统的制冷温度最低可达-50℃左右,例如,张烃等建立的电子制冷预浓缩-双柱气相色谱-质谱/氢火焰离子化检测器方法,其样品富集冷阱温度为-30℃。该方法具有设备体积小、适用于在线监测的优点,但需要注意吸附剂性能对分析结果影响较大,需通过系统实验验证选择最佳的吸附剂或吸附剂组合。除以上两种预浓缩系统外,北京大学与武汉天虹公司合作开发了基于复叠式压缩机制冷循环的预浓缩系统,在不使用液氮的前提下,其富集温度可达到-150℃。美国Entech公司则研发了多重毛细柱捕集阱技术,无需液氮等制冷剂以及吸附剂,可以在35℃下对TO-15组分进行富集,并具有良好的除水效果,但该设备目前应用相对较少,其性能尚待评估。乙烷、乙烯、丙烷和乙炔等C2~C3组分在常规毛细色谱柱中响应较差,且出峰早,容易受到未除净的氮气、氧气、二氧化碳和水等组分的影响,因此在分析C2~C3组分时,需要对方法进行改善和优化。其中一种方法是在气相色谱中使用多维切割单元(或中心切割单元、微流控平板等)进行双柱切换,双柱分别为多孔层开管石英毛细管柱(PLOT),用于分析C2~C3组分,以及DB-624柱或类似类型的色谱柱,用于分析C4~C12组分,双柱分别与氢火焰离子化检测器及质谱相连。另外采用冷柱箱进样方式可实现基于单一色谱柱(DB-1或DB-624等同类柱)的C2~C12组分分析和检测。甲醛等醛、酮类化合物极性较强,容易吸附在采样罐内壁上,目前国内的手工监测标准方法是使用填充了2,4-二硝基苯阱(DNPH)的采样管进行衍生化采样,使用高效液相色谱法进行分析。研究表明,通过使用内壁惰性化的苏玛罐进行采样,优化冷阱程序或填料,质谱采用选择离子检测(SIM)模式等手段也可以通过预浓缩-热脱附-气相色谱-质谱系统进行醛、酮类组分的分析,结合中心切割技术,只需一针进样就能分析《2018年监测方案》中要求监测的全部117种挥发性有机物。

编辑:赵凡

  • 微信
  • QQ
  • 腾讯微博
  • 新浪微博

相关新闻

网友评论 人参与 | 条评论

版权声明: 凡注明来源为“中国水网/中国固废网/中国大气网“的所有内容,包括但不限于文字、图表、音频视频等,版权均属E20环境平台所有,如有转载,请注明来源和作者。E20环境平台保留责任追究的权利。
媒体合作请联系:李女士 010-88480317

010-88480329

[email protected]

Copyright © 2000-2020 https://www.chndaqi.com All rights reserved.

中国大气网 版权所有