首页 > 新闻 > 正文

燃煤电厂SCR脱硝系统氨逃逸率控制技术研究

时间:2019-04-22 13:32

来源:华电技术

作者:游松林 罗洪辉等

4.jpg

由于SCR反应器中催化剂反应反馈滞后和NOx分析仪响应滞后等原因,使得SCR脱硝控制系统存在大滞后性和大延时性,难以精确控制喷氨量。尤其是机组变负荷时,SCR入口烟气量或NOx质量浓度急剧变化,调节的惯性和延时性容易导致烟囱入口NOx质量浓度瞬时值超标。为了使各工况下满足超低排放要求,出口NOx质量浓度设置值往往偏低,导致SCR系统喷氨过量,氨逃逸率超标。实际运行中,当两侧SCR反应器风量相差较大时,两侧喷氨量过多或过少,喷氨量过多的一侧容易发生氨逃逸。

此外,NOx质量浓度考核点和控制点不一致。环保考核时以烟囱入口NOx质量浓度测点为准; 喷氨自动调节时,单侧烟道的SCR反应器出口NOx质量浓度为被控量。SCR反应器出口测点与烟囱入口测点所测量的NOx质量浓度存在不同程度的偏差,影响喷氨量的精准控制。

2.5 测量方法和仪表

由于氨逃逸的量级非常小,理论计算很难准确。相对于离线手工分析法,原位光学测量法可以实现在线监测,但光学测量的准确度容易受高温、高尘恶劣工况的影响。烟气含尘量大时,测量探头受钢制烟道壁振动及温度变化的影响,会出现测量不稳定或指示飘移现象,导致测量偏差大; 同时,SCR出口烟道烟气分布不均匀,导致采样误差较大,影响氨逃逸量在线监测的准确度。一般以氨逃逸仪表监测的氨逃逸变化趋势作为运行参考,而难以通过表值准确控制喷氨量和氨逃逸率。

3 氨逃逸率控制技术

3.1 流场优化

实际运行过程中,SCR脱硝系统中气流流动非常复杂,在烟道内设置导流板可有效改善速度分层现象。导流板后可加装气流均布器( 在第1 层催化剂上方加装整流格栅等) ,利用局部的紊流改善流场速度不均匀的状况。根据不同机组的具体情况,合理设置导流板的位置、数量、形式等,在改善流场的同时要尽可能低地增加系统压降。

氨喷入之后与烟气混合的均匀性集中在氨的喷射方式和喷氨后与烟气的混合两个方面,主要取决于喷氨格栅形式及氨烟静态混合器的选型与布置。国内外开发并应用于工程实际的喷氨装置包括线性控制喷氨格栅、分区控制喷氨格栅和静态涡流混合器技术,技术对比见表1。线性控制喷氨格栅技术成熟,应用最广; 分区控制喷氨格栅是利用分区流量调节技术,使喷氨量适应烟气中NOx的分布; 涡流混合器技术使NH3与NOx混气体在混合元件诱导下形成稳定的涡流或旋流,加强扰动,强化湍流扩散。线性控制喷氨格栅和分区控制喷氨格栅依靠数量多、口径小的喷嘴实现均匀喷氨,但也正因为这一特点,运行过程中喷嘴堵塞后,反而难以实现均匀喷氨,影响氨氮摩尔比分布的均匀性。静态涡流混合器克服了小喷嘴容易堵塞的问题,具有良好的操作弹性,其难点在于静态混合器的结构设计,以及开发高效低阻扰流装置,缩短混合段距离。

5.jpg

3.2 控制系统优化

针对SCR脱硝控制系统大滞后、大延时问题,通过引入预测控制、融合改进的状态变量控制、相位补偿控制等技术,提前预测被调量未来变化趋势,提高脱硝系统闭环稳定性和抗扰动能力。基于预测控制和智能前馈技术的脱硝喷氨优化控制策略如图5所示。该技术通过考虑SCR上游锅炉侧多个扰动变量对SCR 脱硝过程的影响,将多参数进行拟合作为扰动变量,实现预测控制和提前调节。

6.jpg

此外,稳定的喷氨量控制取决于高质量的氨气质量流量计、氨量调节阀和最佳的控制参数。在同等设备和控制条件下,通过控制系统优化,改善喷氨时机,特别是提高喷氨控制系统对机组负荷变化的响应速度,避免机组负荷变化时喷氨量未及时跟踪而使氨逃逸率超标。

3.3 喷氨优化调整

对于现役SCR 脱硝系统,在不改造系统设备的情况下,通过喷氨格栅优化调整,可改善氨氮摩尔比分布的均匀性。脱硝系统一般由多个蝶阀等部件协同控制喷氨量,需要根据喷氨格栅截面内的流场分布特性对各支管阀门进行调整,保证良好的氨氮摩尔比分布,使各区域喷氨量与NOx流场相匹配,提高脱硝效率,避免局部区域过量喷氨而导致逃逸氨偏高; 同时,可以通过改善反应器出口NOx质量浓度分布均匀性,减小取样点的测量误差,优化控制系统参数,提高喷氨量控制的精确度。

3.4 测量仪表及测量方法改进

采用原位光学法测量氨逃逸率时,应合理设置仪表的安装位置及激光对位,关注安装处结构变形、探头附近的水蒸气、吹扫空气对仪表的影响。定期对氨逃逸率测量仪表进行检查和校验,由飞灰中氨含量辅助推断氨逃逸状况,氨逃逸异常时应及时对仪表工作状态进行检查。超低排放改造时,应按要求更合适精度的仪表,降低测量误差对氨逃逸控制准确度的不利影响。通过对SCR进、出口流场的测试,采用多点取样旁路管的方式,提高测点的取样代表性,在一定程度上减少SCR出口与烟囱入口NOx质量浓度的偏差。

3.5 机组运行优化及检修维护

在脱硝超低排放改造时,根据机组情况,可优先进行低氮燃烧优化改造,从源头上减少NOx生成量。采取炉内燃烧优化调整措施,通过调整氧量,调整分离燃尽风( SOFA) 风门开度,合理搭配煤种等,降低脱硝装置入口NOx质量浓度。机组运行过程中,加强氨逃逸监测,定期对现有催化剂进行检测分析,尤其要关注脱硝装置催化剂压差、系统阻力、空气预热器阻力等参数。

停炉检修时,需检查喷氨格栅喷嘴堵塞情况,对堵塞的喷嘴进行吹扫清理,加强喷氨系统阀门的维护,使喷氨调节阀有良好的调节特性,减少内漏量。重视脱硝吹灰器的检查与维护,对催化剂积灰、磨损情况进行及时清理和修复,按规定测试催化剂活性,必要时增加催化剂层或更换催化剂,提高脱硝效率,降低氨逃逸率。

编辑:李丹

  • 微信
  • QQ
  • 腾讯微博
  • 新浪微博

相关新闻

网友评论 人参与 | 条评论

版权声明: 凡注明来源为“中国水网/中国固废网/中国大气网“的所有内容,包括但不限于文字、图表、音频视频等,版权均属E20环境平台所有,如有转载,请注明来源和作者。E20环境平台保留责任追究的权利。
媒体合作请联系:李女士 010-88480317

010-88480329

[email protected]

Copyright © 2000-2020 https://www.chndaqi.com All rights reserved.

中国大气网 版权所有